江西单独招生

3773考试网2016高考江西单独招生正文

江西生物科技职业学院2013高职单招考试大纲

来源:2exam.com 2013-4-8 21:42:41

 

  ① 了解空间直角坐标系,会用空间直角坐标表示点的位置.

  ② 会推导空间两点间的距离公式.

  5.算法初步

  (1)算法的含义、程序框图

  ① 了解算法的含义,了解算法的思想.

  ② 理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.

  (2)基本算法语句

  理解几种基本算法语句――输入语句、输出语句、赋值语句、条件语句、循环语句的含义.

  6.统计

  (1)随机抽样

  ① 理解随机抽样的必要性和重要性.

  ② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.

  (2)用样本估计总体

  ① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.

  ② 理解样本数据标准差的意义和作用,会计算数据标准差(不要求记忆公式).

  ③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.

  ④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.

  ⑤ 会用随机抽样的基本方法和样本估计总体的思想,解决一些简单的实际问题.

  (3)变量的相关性

  ① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.

  ② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.

  7.概率

  (1)事件与概率

  ① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.

  ② 了解两个互斥事件的概率加法公式.

  (2)古典概型

  ① 理解古典概型及其概率计算公式.

  ② 会计算一些随机事件所含的基本事件数及事件发生的概率.

  (3)随机数与几何概型

  ①了解随机数的意义,能运用模拟方法估计概率.

  ②了解几何概型的意义.

   8.基本初等函数Ⅱ(三角函数)

  (1)任意角的概念、弧度制

  ① 了解任意角的概念.

  ② 了解弧度制概念,能进行弧度与角度的互化.

  (2)三角函数

  ① 理解任意角三角函数(正弦、余弦、正切)的定义.

  ② 能利用单位圆中的三角函数线推导出,π±的正弦、余弦、正切的诱导公式,能画出的图像,了解三角函数的周期性.

  ③ 理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大和最小值以及与轴交点等).理解正切函数在区间()的单调性.

  ④ 理解同角三角函数的基本关系式:

  

  ⑤ 了解函数的物理意义;能画出的图像,了解参数对函数图像变化的影响.

  ⑥ 会用三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.

  9.平面向量

  (1)平面向量的实际背景及基本概念

  ①了解向量的实际背景.

  ②理解平面向量的概念,理解两个向量相等的含义.

  ③理解向量的几何表示.

  (2)向量的线性运算

  ① 掌握向量加法、减法的运算,并理解其几何意义.

  ② 掌握向量数乘的运算及其意义,理解两个向量共线的含义.

  ③ 了解向量线性运算的性质及其几何意义.

  (3)平面向量的基本定理及坐标表示

  ① 了解平面向量的基本定理及其意义.

  ② 掌握平面向量的正交分解及其坐标表示.

  ③ 会用坐标表示平面向量的加法、减法与数乘运算.

  ④ 理解用坐标表示的平面向量共线的条件.

  (4)平面向量的数量积

  ① 理解平面向量数量积的含义及其物理意义.

  ② 了解平面向量的数量积与向量投影的关系.

  ③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算.

  ④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.

  (5)向量的应用

  ①会用向量方法解决某些简单的平面几何问题.

  ②会用向量方法解决简单的力学问题与其他一些实际问题.

  10.三角恒等变换

  (1)两角和与差的三角函数公式

  ① 会用向量的数量积推导出两角差的余弦公式.

  ② 会用两角差的余弦公式导出两角差的正弦、正切公式.

  ③ 会用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.

  (2)简单的三角恒等变换

  能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).

  11.解三角形

  (1)正弦定理和余弦定理

  掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

  (2) 应用

  能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.

  12.数列

  (1)数列的概念和简单表示法

  ①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).

  ②了解数列是自变量为正整数的一类函数.

  (2)等差数列、等比数列

  ① 理解等差数列、等比数列的概念.

  ② 掌握等差数列、等比数列的通项公式与前n项和公式.

  ③ 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.

  ④ 了解等差数列与一次函数、等比数列与指数函数的关系.

  13.不等式

  (1)不等关系

  了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.

  (2)一元二次不等式

  ① 会从实际情境中抽象出一元二次不等式模型.

  ② 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.

  ③ 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.

  (3)二元一次不等式组与简单线性规划问题

  ① 会从实际情境中抽象出二元一次不等式组.

  ② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.

  ③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.

  (4)基本不等式:

  ① 了解基本不等式的证明过程.

  ② 会用基本不等式解决简单的最大(小)值问题.

   14.常用逻辑用语

  ① 理解命题的概念.

  ②了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.

  ③ 理解必要条件、充分条件与充要条件的意义.

  ④了解逻辑联结词“或”、“且”、“非”的含义.

  ⑤ 理解全称量词与存在量词的意义.

  ⑥ 能正确地对含有一个量词的命题进行否定.

  15.圆锥曲线与方程

  ① 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.

  ② 掌握椭圆的定义、几何图形、标准方程和简单几何性质.

  ③ 了解双曲线的定义、抛物线、几何图形和标准方程,知道其简单的几何性质.

  ④ 理解数形结合的思想.

  ⑤ 了解圆锥曲线的简单应用.

  16.导数及其应用

  (1)导数概念及其几何意义

  ① 了解导数概念的实际背景.

  ② 理解导数的几何意义.

  ③ 能根据导数定义,求函数y=C(C为常数),的导数.

  ④ 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.

  常见基本初等函数的导数公式:

  (C为常数);, n∈N+;;

  ; ;;;.(a>0,且a≠1)

  常用的导数运算法则:

  法则1  .

  法则2 .

  法则3 .

  ⑤ 了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).

  ⑥ 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).

  ⑦会利用导数解决实际问题.

  17.统计案例

  ①了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.

  ②了解回归分析的基本思想、方法及其简单应用.

  18.合情推理与演绎推理

  ① 了解合情推理的含义,能利用简单的归纳推理和类比推理,体会合情推理在数学发现中的作用.

  ② 了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.

  ③ 了解合情推理和演绎推理之间的联系和差异

  ④ 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程和特点.

  ⑤ 了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.

 

  19.数系的扩充与复数的引入

  ①理解复数的基本概念,理解复数相等的充要条件.

  ②了解复数的代数表示法及其几何意义.

  ③ 会进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义.

  20.框图

  ① 了解程序框图.

  ② 了解工序流程图(即统筹图).

  ③ 能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.

  ④了解结构图.

  ⑤会运用结构图梳理已学过的知识、整理收集到的资料信息.

  21.不等式选讲

  ① 理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:

  |a+b|≤|a|+|b|   (a,b∈R);

  |a-b|≤|a-c|+|c-b|  (a,b∈R).

  ②会利用绝对值的几何意义求解以下类型的不等式:

  |ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c.

  ③ 通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、放缩法.


 

上一页  [1] [2] 

触屏版 电脑版
3773考试网 琼ICP备12003406号-1